Магический квадрат на спряжение глаголов

Как решить магический квадрат: учимся решать одну из древнейших задач

Магический квадрат на спряжение глаголов

Магический квадрат представляет собой квадратную таблицу с числами, построенную так, что сумма чисел в каждой строке, каждом столбце и в каждой диагонали равна одному и тому же числу (магическая сумма). Магические квадраты бывают разных порядков — порядок квадрата определяет число столбцов/строк. Как рассчитать и решать магические квадраты?

Видео:Решите задачу про магический квадрат за 1 минуту. Сможете?Скачать

Решите задачу про магический квадрат за 1 минуту. Сможете?

История

Археологи нашли свидетельства того, что волшебные таблицы были известны еще древним грекам и китайцам. «Магическими» эти фигуры назвали арабы, которые наделяли их сверхъестественными защитными свойствами.

В середине XVI в. европейские математики занялись исследованиями загадочных таблиц, положив начало их новой жизни. Они искали общий метод построения магических квадратов и пытались описать все возможные их варианты.

Видео:Спряжение глаголов. Как определить спряжение глаголов?Скачать

Спряжение глаголов. Как определить спряжение глаголов?

На уроках математики в школе

Решение магических квадратов на уроках математики и внеклассных занятиях вызывает интерес, способствует развитию мышления. Дети учатся планировать и контролировать свою работу. В клетки магических квадратов можно записывать не только числа, но и выражения. Все зависит от изучаемой темы. Задания с магическими квадратами часто дают как дополнительные или олимпиадные уже в начальной школе.

Один из способов решения магического квадрата

Нетрудно решить магический квадрат третьего порядка (у которого по три столбца и строки). Можно воспользоваться тем фактом, что число (выражение), стоящее на пересечении его диагоналей, всегда равно ⅓ волшебной суммы. Отсюда следует алгоритм построения:

  1. Вписываем в первую строку или столбец 3 любых числа.
  1. Вычисляем магическую сумму (0 + 2 + 4 = 6).
  2. Ищем ее третью часть (6/3 = 2).
  3. Полученное число записываем на пересечении диагоналей.
  1. Подбираем остальные числа и заполняем ими пустые клеточки квадрата.

Магический квадрат на спряжение глаголовСмотрите также:

  • Презентация "Магические квадраты"; 2 класс
  • Презентация "Магические квадрат"; 2-3 класс
  • Сценарий мероприятия "Магические квадраты и фокусы"; 5 класс

Видео:Спряжение глаголов | Русский язык |TutorOnlineСкачать

Спряжение глаголов | Русский язык   |TutorOnline

Как рассчитать магический квадрат Пифагора самому?

Пифагор — математик, заложивший основы нумерологии. Ученый верил, что миром правят числа. Даже человеческая сущность зависит от них, ведь дата рождения не что иное, как число.

Магический квадрат Пифагора — фигура третьего порядка, клетки которой заполнены числами от 1 до 9. Он делится на 3 уровня: материальный, души и разума.

Цифры даты рождения вписываются в определенном порядке. Полученная комбинация рассказывает о заложенных природой способностях человека.

Материал может быть использован на занятии математического кружка, на внеклассном мероприятии. Цель — развить и расширить познавательный кругозор и логическое мышление.

Решаем магический квадрат Пифагора: пример

Дата рождения: 17.09.2005 г. Складываем эти цифры, не учитывая нули: 1 + 7 + 9 + 2 + 5 = 24. Аналогично поступаем с цифрами результата: 2 + 4 = 6.

Из первой суммы вычитаем удвоенную первую цифру дня рождения: 24 -2 = 22. Снова складываем: 2 + 2 = 4. Полученные числа: 17; 9; 25; 24; 6; 22; 4.

Цифры вписываем в магический квадрат так, чтобы все единицы оказались в первой клеточке, двойки — во второй и так далее. Нули не учитываем.

Клетка 1 – волевые качества, эгоизм.

Очень эгоистичные люди.

Эгоизм — яркая, но не преобладающая черта характера.

Спокойные, покладистые люди.

Сильный, волевой человек.

Люди с замашками диктатора.

Клетка 2 — биоэнергетика.

Воспитанность, природное благородство.

Люди с повышенной чувствительностью к атмосферным изменениям.

Человек с хорошим запасом биоэнергетики.

Клетка 3 — организованность, любовь к точности, конкретности, скрупулезность, скупость.

Чем больше троек, тем сильнее выражены вышеперечисленные качества.

Клетка 4 — здоровье.

Среднее, требуется закаливание.

Очень крепкое здоровье.

Клетка 5 — интуиция, экстрасенсорные способности

Чем больше пятерок, тем более выражена связь с космосом.

Клетка 6 — материализм.

Люди с неординарным воображением, которым необходим физический труд.

Могут посвятить время и творчеству, и точным наукам. Физические нагрузки обязательны.

Заземленные личности, тянущиеся к физическому труду.

Очень много заземленности.

Клетка 7 — талант.

Чем больше семерок, тем талантливее человек.

Клетка 8 — судьба, отношение к обязанностям.

Чувства долга нет.

Люди, которые всегда спешат помочь другим.

Признак служения народу.

Клетка 9 — умственные способности

Полное отсутствие девяток означает очень низкий уровень умственной деятельности. Чем больше количество девяток, тем умнее человек.

Задачи на составление магических квадратов часто включаются в сборники нестандартных заданий. Они встречаются на олимпиадах. Увлеченным математикой школьникам будет полезно узнать об этом классе задач.

Об авторе: Филиппова Оксана, учитель математики, физики и информатики.

Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя
стало известно автору, войдите на сайт как пользователь
и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.

Магический квадрат на спряжение глаголов

Понравился материал?
Хотите прочитать позже?
Сохраните на своей стене и
поделитесь с друзьями

Вы можете разместить на своём сайте анонс статьи со ссылкой на её полный текст

Магический квадрат на спряжение глаголов

Ошибка в тексте? Мы очень сожалеем,
что допустили ее. Пожалуйста, выделите ее
и нажмите на клавиатуре CTRL + ENTER.

Кстати, такая возможность есть
на всех страницах нашего сайта

0 Спам
1 LifeLana • 16:44, 01.02.2018

2007-2021 «Педагогическое сообщество Екатерины Пашковой — PEDSOVET.SU».
12+ Свидетельство о регистрации СМИ: Эл №ФС77-41726 от 20.08.2010 г. Выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций.
Адрес редакции: 603111, г. Нижний Новгород, ул. Раевского 15-45
Адрес учредителя: 603111, г. Нижний Новгород, ул. Раевского 15-45
Учредитель, главный редактор: Пашкова Екатерина Ивановна
Контакты: +7-920-0-777-397, info@pedsovet.su
Домен: https://pedsovet.su/
Копирование материалов сайта строго запрещено, регулярно отслеживается и преследуется по закону.

Отправляя материал на сайт, автор безвозмездно, без требования авторского вознаграждения, передает редакции права на использование материалов в коммерческих или некоммерческих целях, в частности, право на воспроизведение, публичный показ, перевод и переработку произведения, доведение до всеобщего сведения — в соотв. с ГК РФ. (ст. 1270 и др.). См. также Правила публикации конкретного типа материала. Мнение редакции может не совпадать с точкой зрения авторов.

Для подтверждения подлинности выданных сайтом документов сделайте запрос в редакцию.

О работе с сайтом

Мы используем cookie.

Публикуя материалы на сайте (комментарии, статьи, разработки и др.), пользователи берут на себя всю ответственность за содержание материалов и разрешение любых спорных вопросов с третьми лицами.

При этом редакция сайта готова оказывать всяческую поддержку как в публикации, так и других вопросах.

Если вы обнаружили, что на нашем сайте незаконно используются материалы, сообщите администратору — материалы будут удалены.

Видео:Как решать магический квадратСкачать

Как решать магический квадрат

Как решить магический квадрат (3 класс)? Пособия для школьников

Математических загадок существует невообразимое количество. Каждые из них уникальны по-своему, но их прелесть заключается в том, что для решения неизбежно нужно приходить к формулам. Конечно же, можно попытаться решить их, как говорится, методом тыка, но это будет очень долго и практически безуспешно.

В данной статье будет говориться об одной из таких загадок, а чтобы быть точнее — о магическом квадрате. Мы детально разберем, как решить магический квадрат. 3 класс общеобразовательной программы, конечно, это проходит, но возможно не каждый понял или вовсе не помнит.

Видео:Спряжение глаголов. Что такое спряжение глаголов в русском языке? Для чего нужно спряжение глаголов?Скачать

Спряжение глаголов. Что такое спряжение глаголов в русском языке? Для чего нужно спряжение глаголов?

Что это за загадка?

Магический квадрат, или, как его еще называют, волшебный, — это таблица, в которой число столбцов и строк одинаково, и все они заполнены разными цифрами. Главная задача, чтобы эти цифры в сумме по вертикали, горизонтали и диагонали давали одинаковое значение.

Помимо магического квадрата, есть еще и полумагический. Он подразумевает то, что сумма чисел одинакова лишь по вертикали и горизонтали. Магический квадрат «нормальный» только в том случае, если для заполнения использовались натуральные числа от единицы.

Еще есть такое понятие, как симметричный магический квадрат — это когда значение суммы двух цифр равно, в то время, когда они располагаются симметрично по отношению к центру.

Важно также знать, что квадраты могут быть любой величины помимо 2 на 2. Квадрат 1 на 1 также считается магическим, так как все условия выполняются, хотя и состоит он из одного-единственного числа.

Итак, с определением мы ознакомились, теперь поговорим про то, как решить магический квадрат. 3 класс школьной программы вряд ли все так детально разъяснит, как эта статья.

Видео:Спряжения глаголовСкачать

Спряжения глаголов

Какие есть решения

Те люди, которые знают, как решить магический квадрат (3 класс точно знает), сразу же скажут, что решения только три, и каждое из них подходит для разных квадратов, но все же нельзя обойти стороной и четвертое решение, а именно «наугад». Ведь в какой-то мере есть вероятность того, что незнающий человек все же сможет решить данную задачку. Но данный способ мы отбросим в длинный ящик и перейдем непосредственно к формулам и методикам.

Видео:Магические квадраты от моего Папы!Скачать

Магические квадраты от моего Папы!

Первый способ. Когда квадрат нечетный

Данный способ подходит только для решения такого квадрата, у которого количество ячеек нечетное, например, 3 на 3 или 5 на 5.

Итак, в любом случае изначально необходимо найти магическую константу. Это число, которое получится при сумме цифр по диагонали, вертикали и горизонтали. Вычисляется она с помощью формулы:

Формула 1

В данном примере мы рассмотрим квадрат три на три, поэтому формула будет выглядеть так (n — число столбцов):

Формула 2

Итак, перед нами квадрат. Первое, что надо сделать — это вписать цифру один в центре первой строки сверху. Все последующие цифры необходимо располагать на одну клетку правей по диагонали.

Но тут сразу встает вопрос, как решить магический квадрат? 3 класс вряд ли использовал данный метод, да и у большинства появится проблема, как это сделать таким способом, если данной клетки нет? Чтобы сделать все правильно, необходимо включить воображение и дорисовать аналогичный магический квадрат сверху и получится так, что число 2 будет находиться в нем в нижней правой клетке. Значит, и в наш квадрат мы вписываем двойку в то же место. Это означает, что нам необходимо вписать цифры так, чтобы в сумме они давали значение 15.

Последующие цифры вписываются точно так же. То есть 3 будет находиться в центре первого столбца. А вот 4 по такому принципу вписать не удастся, так как на ее месте уже стоит единица. В таком случае цифру 4 располагаем под 3, и продолжаем. Пятерка — в центре квадрата, 6 — в правом верхнем углу, 7 — под 6, 8 — в верхний левый и 9 — по центру нижней строки.

Решение по первому способу

Вы теперь знаете, как решить магический квадрат. 3 класс Демидова проходил, но у этого автора были чуть попроще задания, однако, зная данный способ, удастся разгадать любую подобную задачу. Но это, если число столбцов нечетное. А что же делать, если у нас, например, квадрат 4 на 4? Об этом дальше по тексту.

Видео:Как правильно определить спряжение глаголов? Как пишутся окончания глаголов?Скачать

Как правильно определить спряжение глаголов? Как пишутся окончания глаголов?

Второй способ. Для квадрата двойной четности

Квадратом двойной четности называют тот, у которого количество столбцов можно разделить и на 2, и на 4. Сейчас мы рассмотри квадрат 4 на 4.

Итак, как решить магический квадрат (3 класс, Демидова, Козлова, Тонких — задание в учебнике математики), когда количество его столбцов равно 4? А очень просто. Проще, чем в примере до этого.

В первую очередь находим магическую константу по той же формуле, что приводилась в прошлый раз. В данном примере число равно 34. Теперь надо выстроить цифры так, чтобы сумма по вертикали, горизонтали и диагонали была одинаковой.

В первую очередь надо закрасить некоторые ячейки, сделать это вы можете карандашом или же в воображении. Закрашиваем все углы, то есть верхнюю левую клеточку и верхнюю правую, нижнюю левую и нижнюю правую. Если квадрат был бы 8 на 8, то закрашивать надо не одну клеточку в углу, а четыре, размером 2 на 2.

Теперь необходимо закрасить центр этого квадрата, так, чтобы его углы касались углов уже закрашенных клеточек. В данном примере у нас получится квадрат по центру 2 на 2.

Приступаем к заполнению. Заполнять будем слева направо, в том порядке, в котором расположены ячейки, только вписывать значение будем в закрашенные клетки. Получается, что в верхний левый угол вписываем 1, в правый — 4. Потом центральный заполняем 6, 7 и дальше 10, 11. Нижний левый 13 и правый — 16. Думаем, порядок заполнения понятен.

как решить магический квадрат 3 класс демидова

Остальные ячейки заполняем точно так же, только в порядке убывания. То есть так как последняя вписанная цифра была 16, то вверху квадрата пишем 15. Далее 14. Потом 12, 9 и так далее, как показано на картинке.

как решить магический квадрат 3 класс демидова козлова тонких

Теперь вы знаете второй способ, как решить магический квадрат. 3 класс согласится, что квадрат двойной четности намного легче решается, чем другие. Ну а мы переходим к последнему способу.

Видео:Русский язык 5 класс (Урок№83 - Спряжение глаголов.)Скачать

Русский язык 5 класс (Урок№83 - Спряжение глаголов.)

Третий способ. Для квадрата одинарной четности

Квадратом одинарной четности называется, тот квадрат, число столбцов которого можно разделить на два, но нельзя на четыре. В данном случае это квадрат 6 на 6.

Итак, вычисляем магическую константу. Она равна 111.

Теперь нужно наш квадрат визуально поделить на четыре разных квадрата 3 на 3. Получится четыре маленьких квадрата размером 3 на 3 в одном большом 6 на 6. Верхний левый назовем А, нижний правый — В, верхний правый — С и нижний левый — D.

как решить магический квадрат 3 класс моро

Теперь необходимо каждый маленький квадрат решить, используя самый первый способ, что приведен в этой статье. Получится так, что в квадрате А будут числа от 1 до 9, в В — от 10 до 18, в С — от 19 до 27 и D — от 28 до 36.

решить магический квадрат 3 класс

Как только вы решили все четыре квадрата, работа начнется над А и D. Необходимо в квадрате А визуально или при помощи карандаша выделить три ячейки, а именно: верхнюю левую, центральную и нижнюю левую. Получится так, что выделенные цифры — это 8, 5 и 4. Точно так же надо выделить и квадрат D (35, 33, 31). Все, что остается сделать, это поменять местами выделенные цифры из квадрата D в А.

как решить магический квадрат 3 класс

Теперь вы знаете последний способ, как можно решить магический квадрат. 3 класс квадрат одинарной четности не любит больше всего. И это неудивительно, из всех представленных он самый сложный.

Видео:Магический квадрат. Угадай какие числа пропущены?Скачать

Магический квадрат. Угадай какие числа пропущены?

Вывод

Прочтя данную статью, вы узнали, как решить магический квадрат. 3 класс (Моро — автор учебника) предлагает подобные задачи только с несколькими заполненными ячейками. Рассматривать его примеры нет смысла, так как зная все три способа, вы с легкостью решите и все предлагаемые задачи.

📺 Видео

Учимся решать "Магический квадрат"Скачать

Учимся решать "Магический квадрат"

Как решать магические квадратыСкачать

Как решать магические квадраты

Спряжение глаголов. Глаголы-исключения 1 и 2 спряженияСкачать

Спряжение глаголов. Глаголы-исключения 1 и 2 спряжения

Спряжение 1 спряжение глаголов Онлайн-школа EXAMhack. ОГЭ ЕГЭ Русский язык 2022Скачать

Спряжение 1 спряжение глаголов Онлайн-школа EXAMhack. ОГЭ ЕГЭ Русский язык 2022

Спряжение глаголовСкачать

Спряжение глаголов

5 СЕКРЕТОВ спряжения глаголов! Как определить спряжение любого глагола? Русский языкСкачать

5 СЕКРЕТОВ спряжения глаголов! Как определить спряжение любого глагола? Русский язык

Спряжение глаголов в русском языке. Глаголы исключения 1 и 2 спряженияСкачать

Спряжение глаголов в русском языке. Глаголы исключения 1 и 2 спряжения

Как определить спряжение глагола за 2 секунды?Скачать

Как определить спряжение глагола за 2 секунды?

Что такое спряжение глагола? Объясню за 2 минуты!Скачать

Что такое спряжение глагола? Объясню за 2 минуты!

МАГИЧЕСКИЕ КВАДРАТЫ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

МАГИЧЕСКИЕ КВАДРАТЫ 😉 #егэ #математика #профильныйегэ #shorts #огэ
Поделиться или сохранить к себе:
История русского языка 📕